LiveWatch

Debug with full history of changes

https://livewatch.pages.dev/

by Justingvar

Table of contents

Table of contents

1.

Home

1.1 What is LiveWatch?

1.2 With LiveWatch, you can:

1.3 What is LiveWatch Lite?

. Getting started

2.1 Installation
2.2 Quick Start

2.3 Learning Basics

. Manual

3.1 Window Overview

3.2 Window Shortcuts
3.3 Generator Overview @

3.4 Usage on Device @

. Reference API

4.1 Watch

4.2 WatchReference
4.3 WatchTitleFormat @
4.4 WatchValueFormat @

4.5 WatchSchema @

4.6 WatchVariableDescriptor @

5. Support

-2/35-

20

22

23

23

26

29

30

31

32

35

by Justingvar

1. Home

1. Home

1.1 What is LiveWatch?

LiveWatch is a powerful tool for monitoring variables in real time in Unity, with full history of changes.

Get it on the Asset Store

-3/35- by Justingvar

https://assetstore.unity.com/packages/slug/300573

1.2 With LiveWatch, you can:

@ Track variables with full history

1.2 With LiveWatch, you can:

Monitor all changes to your variables, ensuring you can review the entire history of each variable’s state over time.

%3 Monitor any type of data

Track any variable type whether it’s a built-in Unity type, a collection (List , Dictionary, etc.), or a custom type.

u Flexible display modes

Switch between Graph mode for high-level visual overviews, or use Cell mode for a more detailed, table-like view.

Q Advanced search

Dive into the entire history of values using complex search queries connected by boolean logic.

é. Conditional formatting

Customize value appearances using color formats, including conditional rules based on the values themselves.

a Save/Load functionality

Store your variable data as binary files and inspect the recorded values on different devices or projects.

-4/35 -

by Justingvar

1.3 What is LiveWatch Lite?

LiveWatch Lite is the free basic version of LiveWatch, offering limited features compared to the Pro (Full) version.

Get it on the Asset Store

Feature

Full history of changes

Basic variable types

Cell/Graph modes

Custom types

Advanced search

Conditional formatting

Extra text

Stack traces

Custom buttons

Save/Load to binary

Private members

Remote debugging

Lite

<

X X X X X X X X X < <

Pro

A N N N N N N N AN

1.3 What is LiveWatch Lite?

Not sure where to begin? Jump into the next chapter

-5/35-

by Justingvar

https://assetstore.unity.com/packages/slug/324001

Getting Started

-6/35-

1.3 What is LiveWatch Lite?

by Justingvar

2. Getting started

2. Getting started

2.1 Installation

If you upgrade from Lite to Full version, make sure to delete LiveWatchLite folder.

2.1.1 Check for dependencies

Ensure your project is running Unity 2021.3 or a later version for compatibility. While the tool might work with earlier versions, functionality cannot be

guaranteed.

2.1.2 Download and Import the Package

Open the Unity Asset Store page for LiveWatch and click Open in Unity to access it via the Package Manager . Or you can manually open the window >

package Manager menu in Unity, search for the asset, and Download it from there. Once the asset is downloaded, click Import to bring it into your project.

2.1.3 Initial Setup

Once imported, the setup is simple. For basic functionality, you can jump right into the Quick Start guide and get started with watching variables.

-7/35- by Justingvar

2.2 Quick Start

2.2 Quick Start

If you only plan to watch basic type variables (e.g., string, bool , numeric types like float or int) or using Lite version, you can skip the first two steps and

go directly to Step 3.

2.2.1 Step 1: Set up Generator @

* In the Project Window, go to Create > LiveWatch > Generator.

* Enter a name for the watch class (e.g., Mywatch) and optionally specify a namespace.

* Click the Create File button in the schema Class File field, and then in the output Class File field to generate the required files.

Create

O Inspector

Regen On Change
ut Class Name

e Name

Generator Settings

LiveWatch
Folder

C# Script

2D

Visual Scripting

Shader

Shader Variant Collection
Testing

Playables

Assembly Definition

Assembly Definition Reference

Text
TextMeshPro

Scene

Scene Template

MyWatches

B MyWatche

Generate

Generate empty

Generator

WatchManagerScrig

Create file

-8/35-

by Justingvar

2.2.2 Step 2: Define the variables in Schema

2.2.2 Step 2: Define the variables in Schema @

* Open the generated schema class script.

¢ Inside the onGenerate method, list the variables you want to watch. For base types you don't need to generate them as they are pre-generated by default. For

custom types, use the Generate<T>() command, where T is your custom type (e.g., Generate<MyCustomType> ()).

chema

OnGenerate()

Generate<LevelStateType>();

Generate<List<MobMain>>();

Generate< elConfig>();

2.2.3 Step 3: Create WatchManager Script

* In the Project Window, go to Create > LiveWatch > WatchManagerScript.

* Open the generated script and in the Start() method, add your watches using the following syntax:
{YourWatchClassName} .AddOrGet ("YourVariableName", () => yourVariableValue) ;

You can place this line anywhere in your project.

-9/35- by Justingvar

2.2.4 Step 4: Attach WatchManager and Watch the magic

LiveWatch > Generator

Folder WatchManagerScript
C# Script

2D >

Visual Scripting >

Shader >

Shader Variant Collection

Testing >

Playables >

Assembly Definition

Assembly Definition Reference

Text >
TextMeshPro >
Scene

Create N Scene Template

WatchManager

Awake()

ch.DestroyAll();

Start()

h.GetOrAdd("Frame" Time.frameCount).SetAlwaysCollapsable();
h.Push(1 '

LateUpdate()

h.UpdateAll();

o
ﬁhat is SetAlwaysCollapsable() ?

SetAlwaysCollapsable () hides less important value columns in Collapse mode. This will keep your watch window cleaner by hiding frequent or non-essential

updates. These values will still be recorded and can be viewed by toggling the Collapse button in the watch window.

2.2.4 Step 4: Attach WatchManager and Watch the magic

« Attach WatchManager script to any GameObject in your scene.

-10/35- by Justingvar

2.2.4 Step 4: Attach WatchManager and Watch the magic

* Enter Play Mode, and you’ll be able to monitor your variables in Window > LiveWatch. More about Watch Window

Want to Learn More?

If you want to learn more about how to use this tool in a real project, take a look at the TowerDefenceDemo provided with this asset. This demo includes practical

examples and showcases how you can use LiveWatch to track variables and debug in more complex scenarios.

Next chapter: Learning Basics

-11/35- by Justingvar

2.3 Learning Basics

2.3 Learning Basics

To get a better understanding of how this tool works, let’s start with the basic concepts involved:

2.3.1 Watch Window

This is the main interface for interacting with your watched variables. It allows you to inspect variables of any type in real-time using Cel/ or Graph mode. You can
also search through variable histories, and Save or Load recorded data for later analysis. The Watch Window is your central hub for tracking and managing variable

changes efficiently.

More about Watch Window

2.3.2 Watch

The main class used to create, destroy, and update variables in your project. It also provides methods for tracking basic variable types, including both auto and

manual tracking modes.

Basic and custom variable types

You can watch both basic types and your own custom types @ :

* Tracking variables of basic types requires no setup — these are readily available through the watch class methods. The basic types supported are: float ,

double, int, string, bool, char, decimal, long, short, byte, ulong, ushort,and sbyte.

« If you need to track custom types @ , you must first generate them using WatchSchema and WatchGenerator. The generated class will contain the same

tracking methods as the watch class, but tailored for your custom types.

Manual and auto tracking mode
There are two ways to expose variables to the Watch window:

* Auto Mode: Call cetoradd with a getter for your variable, and it will be updated automatically on each Updatea1l call.

* Manual Mode: Explicitly Push variable values when needed. This gives you more control but requires careful use to avoid visual inconsistencies.

More about Watch API

2.3.3 WatchReference

An entry point for any operation with a specific watched variable. This is returned from every watch method in the watch class or from your custom-generated
class. You’ll use it for tasks like pushing new values, adding formatting, or changing priority — everything related to managing a watched variable is done through

this entity.

More about WatchReference API

2.3.4 WatchSchema @

The base class for every code generator schema. To create your own watchable types, you need to derive from this class, then use the Generate<T>() method to

add new watchable types. Finally, reference this class file in the WatchGenerator.

More about WatchSchema API

-12/35- by Justingvar

2.3.5 WatchGenerator

2.3.5 WatchGenerator @

A scriptable Object designed to simplify the code generation for new watchable types. You define a name for the generated class, provide a reference to the
Watchschema where the watchable types are described, and set a reference to the output file. The generated class will contain methods similar to the watch class.

By default, the generation process is automatic and triggered by any changes to the linked watchschema class.

More about WatchGenerator

-13/35- by Justingvar

3. Manual

3. Manual

3.1 Window Overview

3.1.1 Watch Window

This is the main window of the tool, where most of its features are accessible. You can find it under Window/LiveWatch.

Below are descriptions of the key components:

Frame

ime

Playing

Health 20 9 18
62
Built Laser at 1 Built Lz
Small_4 hit by Laser_1

Small_3 killed by Laser_1

1. Search @

Toggles the visibility of the Search Panel.

2. Live

Enables or disables data recording, including manual updates. Enabled by default.

3. Collapse

Hides columns with unchanged values, showing only columns with unique values. Enabled by default.

\J
ﬁ)w to make variable values Collapsable?

Use SetAlwaysCollapsable () method.

-14/35- by Justingvar

3.1.1 Watch Window

4. Clear

Deletes all recorded data for the variables. The variables remain, but all data is lost. Be cautious when using this, as there is no confirmation prompt.

5. View

Submenu for adjusting data visualization settings.

6. Load @

Loads watch data from a previously saved binary file.

7.Save @

Saves the current data as a binary file to a selected path.

8. Preferences

Submenu with various useful commands.

9. Variable Name

Displays the name of the watched variable. If the variable has child members (i.e., it's not a basic type), there will be a foldout button on the left of the label.

.

Note that the column is resizable by dragging with the mouse.

10. Variable Values

Values are organized into cell segments, where identical values are merged into one long cell. Each cell contains a progress bar that compares the variable’s value to
others visible on the screen.
Clicking anywhere in the value area will bring up a selection column showing all values from the same iteration. If the selected cell has unique values to the left or

right, small guiding triangles appear, indicating whether the neighboring value is larger or smaller (top or bottom triangle).

11. Child Variables Preview

If a variable has child members, its values are displayed in a compressed view regardless of their count or depth. Each line in the preview cell represents a specific

child ordered from top to bottom. A bright rectangle indicates a changed value in that column. Search results are also shown here.

\J
ﬁhy does the preview take time to appear?

This calculation runs in the background on a separate thread to avoid slowing down the interface, but processing time may increase depending on the number and depth
of the child variables.

12. Info Area

Depending on what is selected, this area will show either the full name or the value of the specific variable, regardless of its length.

13. Extra Text @

You can attach additional information to each pushed value. For example, in the screenshot, it shows the source of the gold change.

-15/35- by Justingvar

3.1.2 Search Panel

3.1.2 Search Panel @

The Search Panel functionality is more advanced than in a typical Console, allowing for the use of multiple queries linked by boolean operators. Additionally,

similar to other areas, the Search Panel is resizable.

LiveWatch

Search Live Collapse Clear View ¥ @ R

+Line 114 « = Run AutoRun
Value ¥ Numeric * Less Or Equal

Name ¥ String Equals

1. New Line

Adds a new query line.

2. Progress Bar

Displays the current search progress along with a counter.

3. Previous Result

Navigates to the previous search result

\J
ﬁhy Collapse mode disables after click?

Jumping to a different search value will disable the Collapse feature to prevent skipping potentially collapsed values.

4. Next Result

Similar to the previous function, this navigates to the next result. The jump order is lef to right for values, and then from top to bottom for variables, starting with

variable labels if there are such queries.

5. Run

Triggers the search. Processed in a separate thread.

6. AutoRun

When enabled, the search restarts every time the queries are modified.

7. Query Connective Operator

Defines the boolean operator, either OR or AND.

8. Inverse

Inverts the affected query line (e.g., a query of <= 15 will become > 15 after inversion).

9. Target

Specifies the target for the query line, which can be either a variable Name or Value.

-16/35- by Justingvar

3.1.3 Cell View Submenu

10. Target Type
For variable names, it’s always String. For values, it includes: String (string and char), Bool, Decimal (£1oat , double), Integer (int , short ,etc.), and
Numeric (for both Decimal and Integer).

11. Query Line Operator
Determines the query operator based on target types. For String, the options are Equals and Contains. For numerical values, it includes Equals, Greater,

GreaterOrEqual, Less, and LessOrEqual.

12. Query

Represents the query text itself.

13. Case

Toggles case sensitivity for String queries. For example, after enabling, the previously positive query ‘Health’ Equals ’health’ will become negative.

14. Delete

Removes the query line. Note that the first line cannot be deleted.

3.1.3 Cell View Submenu

This submenu allows you to customize the appearance of the cells.

Restore defaults

1. Width

Slider for adjusting the width of the cells. If the width drops below a certain level, the window will switch to Graph mode.

2. Height

Slider for adjusting the height of the cells.

3. Selection

Option for selecting the direction of the selection column: Right or Left .

4. Restore Defaults

Resets the above settings to their default values.

3.1.4 Preferences Submenu

This submenu provides access to various settings related to LiveWatch.

-17/35- by Justingvar

3.1.4 Preferences Submenu

_ -

View ¥ (& -
Preferences
Collapse all rows
Generate empty all

Generate all
1. Preferences
Link to the Editor preferences Window, where you can adjust LiveWatch settings and parameters.

2. Collapse all rows

Collapses all variable rows recursively, folding all child elements within each row for a cleaner and more organized view.

3. Generate empty all)

Calls Generate empty on every Generator scriptable object present in the project.

4. Generate all @

Calls Generate on every Generator scriptable object present in the project.

Next chapter: Window Shortcuts

-18/35- by Justingvar

3.2 Window Shortcuts

This section lists all shortcuts that can be used in the Watch Window. Most of them can be changed in Preferences.

1. “ctrl J+ Mouse Scroll J

Changes the width of value cells.

2. ©shift |+ Mouse Scroll |

Adjusts the height of variables.

3. -alt J'I- Mouse Scroll J

Scrolls through values horizontally (left/right).

4. Mouse Scroll

Scrolls through variables vertically (up/down).

5.(r)

Switches the selection direction to right/left.

6. Space

Expands the currently selected variable (if it has children).

7. . Down

Moves to the next variable (below the current one).

8. 1Up

Moves to the previous variable (above the current one).

9. - Left

Moves to the previous value (to the left of the current one).

10. - Right

Moves to the next value (to the right of the current one).

3.2 Window Shortcuts

Next chapter: Generator Overview

-19/35-

by Justingvar

3.3 Generator Overview

3.3 Generator Overview

Watch Generator is a scriptableObject that automates and simplifies the code generation process for custom variable types. In most cases, you only need to set

it up once, and then it will function autonomously.

It can be created via Create > LiveWatch > Generator.

© Inspector

)n Change
Name TD_Watches

tput Namespace Name

Output Clas
Is Static
Is Partial
Clas i Public
Generator
Generate
Generate
Max Generation Depth
Max Push Depth
Max

Max Di

Generate

Generate empty

1. Auto Regen On Change

Automatically regenerates code after every change in the Schema file.

2. Output Class Name

Field for specifying your custom watch class name.

3. Output Namespace Name

Field for your custom watch class namespace. If left empty, no namespace will be generated.

4. Schema Class File

Reference to your schema script in the project. This is where you can list the types you want to watch.

5. Output Class File

Reference to your custom watch class script.

-20/35- by Justingvar

3.3 Generator Overview

6. IsStatic

Indicates whether the generated class should be static.

7. IsPartial

Indicates whether the generated class should be partial .

8. Class Modifier

Specifies whether your Watch class will be public or internal .

9. Generate Collections Count

Determines whether Count / Length fields will be generated for collection types (Array, List, Dictionary, etc.).

10. Generate Extensions

Indicates whether extension methods will be generated. By default, this is turned off to reduce the generated file size.

11. Max Generation Depth
Defines how deep the generator will dive inside types. Avoid raising this too much as it can significantly affect performance and may lead to cyclic dependency
issues.

12. Max Push Depth

Defines how deep Push methods will dive into their children. Also not recommended to raise too high for similar reasons.

13. Max Collection Size
Defines the maximum capacity for watchable collection (Array, List, Stack, etc.) members. Members exceeding this limit will be discarded. This limit does
not affect other members like Count .

14. Max Dictionary Size

Same as the previous parameter but for dictionaries.

15. Generate

Triggers the generation process. This can take some time if there are many watchable types in the Schema .

16. Generate Empty

Also triggers generation, but all generated methods will be empty. This is useful if your project has compilation errors caused by the generated watch class (e.g.,
after deleting some type’s member). To resolve this, you can manually delete affected parts in the generated class or use Generate Empty, ensure that the project

can be recompiled, and then click Generate.

Next chapter: Usage On Device

-21/35- by Justingvar

3.4 Usage on Device

3.4 Usage on Device

Currently, LiveWatch is limited to use within UnityEditor . However, you can record data in a build, save it as a binary file, and then open it later in
UnityEditor forreview. To enable this, WatchSaveCanvas prefab is available in the root folder of the tool, providing the necessary setup for data exporting. If it

doesn’t suit your project’s needs, feel free to create a custom implementation.

Steps to Use LiveWatch in a Build:

3.4.1 1. Add the watchsavecanvas Prefab

Add watchsavecanvas to your scene. By default, it can be accessed through a transparent OpenButton in the top left corner of the screen. Adjust this as needed
or implement a custom access point. Just make sure to call WatchServices.SaveLoader.Save when saving data (you can pass

WatchStorageSO.instance.Watches and your finish callback as optional parameters).

3.4.22. Add the r1ve warca BUiLD Define

In your project settings, add the L.1vE waTcH BUILD define.

3.4.3 3. Make a Build

Create a build of your project.

3.4.4 4. Launch and Save

Run the build and create a save. If using the default logic, click the top left corner, modify the file name if needed, and click save. The save path will display upon

completion, defaulting to the Application.persistentDataPath folder.

3.4.5 5. Transfer and Load in Unity

Locate the .watch file, transfer it to your PC, and open it in the Unity editor by clicking Load .

-22/35- by Justingvar

https://docs.unity3d.com/2021.3/Documentation/Manual/CustomScriptingSymbols.html
https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

4. Reference API

4. Reference API

4.1 Watch

watch class serves as the primary entry point for all operations involving watch variables.

4.1.1 Global Management Methods

These methods manage global operations for all variables in the project.

UpdateAll

public static void UpdateAll ()

Updates all variables. Typically called from the LateUpdate () method but can be invoked elsewhere if needed.

How does UpdateAll work? For each variable, Push () is called recursively using the Func<T> valueGetter from GetOradd() . Ifa variable is created manually

without a getter, it should be updated manually via push () .

ﬂﬂate order matters

Manual updates must be done BEFORE calling Updateall () to avoid inconsistent visual representation.

\J
ﬁlsure Live Is Active

This method won't function if the Live Toggle is off in the LiveWatch window.

ClearAll
public static void ClearAll()

Clears all values for all variables, similar to the Clear button in the LiveWatch window.

DestroyAll

public static void DestroyAll ()

Destroys all variables and their data. Usually called in 2awake () to remove variables from previous playmode sessions. If you want to preserve variables from the

previous session, you can skip this call.

4.1.2 Type-Indifferent Methods

These methods interact with variables regardless of type.

GetOrAdd

public static WatchReference<T> GetOrAdd<T>(string path)

Creates an existing variable or adds a new one of type T with name path . Note that type T must be one of the basic types or a type generated from the Schema.

-23/35-

by Justingvar

4.1.3 Per Type Methods

PushEmpty
public static WatchReference<Any> PushEmpty(string path)

Pushes an empty value to the variable identified by name path , regardless of its type.

\J
ﬁhat is Any type?

Any is not a real type, it's a special type for cases when variable type does not matter.

PushFormat @

public static WatchReference<Any> PushFormat (string path, WatchValueFormat format)

Pushes a colored format to the variable with name path .

PushExtraText @

public static WatchReference<Any> PushExtraText (string path, string extraText)

Pushes additional text extraText to the variable with name path .

PushStackTrace @

public static WatchReference<Any> PushStackTrace (string path)

Captures and pushes the current stack trace to the variable with name path .

4.1.3 Per Type Methods

These methods are designed for concrete types including basic types and generated ones.

GetOrAdd
public static WatchReference<T> GetOrAdd(string path, Func<T> valueGetter)

Creates or retrieves a variable identified name path . The valueGetter is a function that is used for automatic updates to the variable during each Updateall call.
public static WatchReference<T> GetOrAdd<V> (WatchReference<V> parent, string path, Func<T> valueGetter)

Creates or retrieves a variable with name path that is a child of the specified parent variable. The valueGetter allows for automatic updates.

Setup

public

static WatchReference<T> Setup (WatchReference<T> watchReference)

Prepares the specified variable watchreference for its first update. This method is automatically called for all variables created via the aforementioned methods and

during the first call to Push() .

Push

public s ~ic WatchReference<T> Push (WatchReference<T> watchReference, T value, int maxRecursionDepth = 10)

Pushes the provided value into the given watchReference variable. The maxRecursionDepth controls how deep the push operation will proceed to prevent an

infinite recursion loop.

-24/35- by Justingvar

4.1.3 Per Type Methods

public static WatchReference<T> Push(string path, T value, int maxRecursionDepth = 10)

Pushes the specified 'value' to the variable identified by name path . The maxRecursionDepth regulates the depth of the push operation.

PushValue

internal static WatchReference<T> PushValue (this WatchReference<T> watchReference, T value, int maxRecursionDepth = 10)

An extension method that functions similarly to the standard push () method. It is not generated by default for custom types but can be enabled in the Generator.

Iﬁte if you want to use extensions

Extension methods must be called from the same namespace and assembly.

GetOrAddChild

internal static WatchReference<T> GetOrAddChild<V> (this WatchReference<V> parent, string path, Func<T> valueGetter)

An extension method that operates identically to the usual Getoradd () . It is not generated by default for custom types but can be enabled in the Generator.

SetupWatch

internal static WatchReference<T> SetupWatch(this WatchReference<T> watchReference)

An extension method that mirrors the functionality of the standard setup () . It is not generated by default for custom types but can be enabled in the Generator.

-25/35- by Justingvar

4.2 WatchReference

4.2 WatchReference

WatchReference<T> is a struct type returned by most Watch methods, providing straightforward access to common operations for watch variables.

4.2.1 ChildCount

public int ChildCount

Returns the number of child variables. Returns 0 if there are none.

4.2.2 GetChildNames

public IEnumerable<string> GetChildNames ()

Retrieves a collection containing the names of all child variables.

4.2.3 GetOrAdd

public WatchReference<V> GetOrAdd<V>(string path)

Retrieves an existing child variable or adds a new one with the specified name path and type v . This method is similar to Getoradd() .

4.2.4 SetAlwaysCollapsable

public WatchReference<T> SetAlwaysCollapsable ()

Configures the variable columns to always be collapsable. If Collapse button is enabled in the Watch window, values from these variables will behave as if they haven't

changed. This is useful for constantly changing values, to prevent cluttering.

4.2.5 SetSortOrder

public WatchReference<T> SetSortOrder (int value)

Assigns a sorting order to the variable, determined by the specified value . This functions similarly to scripting execution order in Unity: a higher value places the
variable lower in the display order and vice versa. If no sorting order is specified, it defaults to the creation order of the variables, with a float value expected between

0 and 1.

4.2.6 SetDecimalPlaces

public WatchReference<T> SetDecimalPlaces (int value)

Sets the number of decimal places for numeric values. The defaultis 2 . If applied to a non-numeric variable, it has no effect.

4.2.7 UpdateOnce

public WatchReference<T> UpdateOnce ()

Configures the variable to update its value only once, after which all future updates will be ignored. Applies to both auto-updated variables during the first

Updateall () call and manually-updated variables during the first push () .

4.2.8 PushEmptyValue

public WatchReference<T> PushEmptyValue (bool withRoot = true, int maxRecursionDepth = 10)

Pushes an empty value to the variable and all of its children recursively, constrained by maxRecursionDepth . If withRoot issetto false,the empty value will not

be pushed to the target variable itself, only to its children.

-26/35- by Justingvar

4.2.9 SetTitleFormat

4.2.9 SetTitleFormat @

public WatchReference<T> SetTitleFormat (WatchTitleFormat format)

Overrides format for the variable's display area.

4.2.10 SetDefaultValueFormat @

public WatchReference<T> SetDefaultValueFormat (WatchValueFormat format)

Overrides the default format for the variable's values.

4.2.11 AddConditionalValueFormat @

public WatchReference<T> AddConditionalValueFormat (Func<T, bool> condition, WatchValueFormat format)

Defines a rule for formatting values with format based on a condition. condition is a delegate that takes a value of type T and returns whether the condition is

met.

g
{mulﬁple conditions are true for the same value

If multiple positive conditions are present, only the last one will take effect.

public WatchReference<T> AddConditionalValueFormat (Func<T, bool> condition, Func<T, WatchValueFormat> dynamicFormat)

Defines a rule for formatting values, similar to the previous method, but allows for dynamicFormat that determines the format based on the value.

4.2.12 PushValueFormat @

public WatchReference<T> PushValueFormat (WatchValueFormat format)

Directly pushes value format to the variable. Pushing formats functions like pushing values and must be done before calling wWatch.Updateall () .

4.2.13 PushExtraText @

public WatchReference<T> PushExtraText (string extraText)

Pushes additional text extraText to the variable. Similar to pushing values, this must also be done before watch.Updateall () is called.

4.2.14 SetTraceable @

public WatchReference<T> SetTraceable ()

Marks variable as Traceable, automatically capturing the stack trace whenever its value is pushed.

Ay I don't see the stack trace?

Note that setTraceable () has no effect on auto-updating variables, as it would only capture the internal watch.Updateall call. In such cases, you can manually

push the stack trace using PushstackTrace () (or it's direct version) whenever you're certain the variable value has been changed.

4.2.15 PushStackTrace @

public WatchReference<T> PushStackTrace ()

Captures and attaches the current invocation stack trace to the variable. Works regardless of whether setTraceable () is enabled. Like pushing values, this must be

called before watch.Updatenrll () .

-27/35- by Justingvar

4.2.16 SetMinMaxModeAsGlobal

4.2.16 SetMinMaxModeAsGlobal @

public WatchReference<T> SetMinMaxModeAsGlobal ()

Sets the variable's min/max calculation mode to global, meaning the values min/max will be determined based on the entire history. By default, it's /ocal, meaning the

min/max is calculated only from the values currently visible on screen.

4.2.17 SetMinMaxModeAsCustom @

public WatchReference<T> SetMinMaxModeAsCustom(double minValue, double maxValue)

Sets the variable's min/max calculation mode to custom, meaning the min/max values are manually set to the specified minvalue and maxvalue . By default, it's

local, where min/max is calculated only from the values currently visible on screen.

\J
ﬁhat is min/max mode?

Min/max values are calculated for every variable to determine the fill level of the value cell's progress bar. It doesn't affect anything except the displayed cell visuals.

4.2.18 SetCustomAction @

public WatchReference<T> SetCustomAction(string name, Action action)

Adds a custom button to the variable info area. name defines the button's text, and action specifies the function to execute when the button is clicked.

4.2.19 TrackObjectReference @

public WatchReference<T> TrackObjectReference ()

Enables the variable of any Unity type (like MonoBehaviour or scriptableObiject)to appear in the variable's info area, making it easy to locate the related object

in the scene or project.

4.2.20 PushObjectReference @

public WatchReference<T> PushObjectReference (UnityEngine.Object reference)

Pushes an UnityEngine.Object reference (e.g., MonoBehaviour , ScriptableObject) to the variable, allowing it to be displayed in the variable's info area.

-28/35- by Justingvar

4.3 WatchTitleFormat

4.3 WatchTitleFormat

The wWatchTitleFormat is a struct used to customize the appearance of a watch variable’s label area

4.3.1 Constructor

public WatchTitleFormat (Color color)

This constructor allows you to set the background color color for the label area of a watch variable.

-29/35- by Justingvar

4.4 WatchValueFormat

4 .4 \WatchValueFormat

WatchvalueFormat is a struct used to define the formatting options for a variable's value.

4.4.1 Constructor
public WatchValueFormat (Color fillColor)
This constructor sets the progress fill color fillcolor for a variable cell.
public WatchValueFormat (Color fillColor, Color graphLineColor)

This constructor sets the progress fill color fillcolor for a variable cell and the line color graphLineColor used in Graph mode.

-30/35- by Justingvar

4.5 WatchSchema

4.5 WatchSchema

WatchSchema class is used by the Generator to declare and describe types for generation

4.5.1 Generate

protected WatchVariableDescriptor Generate (Type type)

Adds the specified type type to the generator. This method should be called from the onGenerate () method. It returns an instance

of watchvariableDescriptor , which can be utilized to specify which fields should be generated or excluded.
protected WatchVariableDescriptor Generate<T> ()

This is the generic version of the Generate (Type) method.

4.5.2 Define

protected WatchVariableDescriptor Define (Type type, bool withInheritors = true)

Adds a type type definition to the schema. This method functions similarly to Generate but does not add the target type to the generator; it only stores the type
description. This is useful for inherited classes, as all definitions from the base class are applied to derived classes. withInheritors parameter determines whether

this definition applies to all inheritors of the type. If set to false, only the type itself will be affected. This method should be called from the onbefine () method.
protected WatchVariableDescriptor Define<T>(bool withInheritors = true)

This is the generic version of the Define (Type, bool) method.

4.5.3 OnDefine

public virtual void OnDefine ()

This method allows you to override or add new type definitions. By default, onbefine () includes several predefined definitions. For instance, it contains a definition
for MonoBehaviour to exclude all its members, and definitions for basic Unity types like vector3 , which only includes the fields x, y,and z.You can modify

this behavior by overriding this method and adding a new Define for the target type.

4.5.4 OnGenerate

public virtual void OnGenerate ()

In this method, you can declare your generated types. If a target type was previously described by Define or if multiple descriptors for the same type exist, a merging
algorithm will be applied. Merging prioritizes the descriptor of an inherited class over the base class. Therefore, if a field is ignored in the base class descriptor but

allowed in the derived class descriptor, it will be visible in the generated derived type while remaining hidden in the base class.

-31/35- by Justingvar

4.6 WatchVariableDescriptor

4.6 WatchVariableDescriptor

WatchvariableDescriptor class allows you to specify which type members to include or exclude in the generated watch variable, along with custom names and

additional parameters.

4.6.1 Reset

public WatchVariableDescriptor Reset ()

Clears all specified data in the descriptor.

4.6.2 SetSelfRecursion

public WatchVariableDescriptor SetSelfRecursion (bool allow)

Determines whether the type can include members of the same type, useful for types like Transform and Vector3 to ignore recursive members. Self recursion is
disabled by default.

4.6.3 SetTypeMask

public WatchVariableDescriptor SetTypeMask (MemberType mask)

Defines which member types (Field, Property, Method,or All) can be included. By default, it includes fields and properties but excludes methods.

4.6.4 SetSortOrder

public WatchVariableDescriptor SetSortOrder (string memberNameReal, int sortOrder)

Assigns a sorting order to a variable's member memberNameReal , determined by the specified sortorder . Works just like setSortOrder in WatchReference .

4.6.5 SetDecimalPlaces

public WatchVariableDescriptor SetDecimalPlaces (string memberNameReal, int decimalPlaces)

Sets the number of decimal places for a variable's member memberNameReal , determined by the specified decimalPlaces . Works just like SetDecimalPlaces in

WatchReference .

4.6.6 SetAlwaysCollapsable

public WatchVariableDescriptor SetAlw

ysCollapsable (string memberNameReal)

Sets a variable's member memberNameReal values as always collapsable.

4.6.7 UpdateOnceMember

public WatchVariableDescriptor UpdateOnceMember (string memberNameReal)

Configures the member memberNameReal to update its value only once, after which all future updates will be ignored. Applies to both auto-updated variables during

the first Updateall () call and manually-updated variables during the first push () .

4.6.8 RevertUpdateOnceMember

public WatchVariableDescriptor RevertUpdateOnceMember (string memberNameReal)

Removes the Updateonce modifier from the specified member memberNameReal , allowing it to update normally again.

-32/35- by Justingvar

4.6.9 IgnoreMember

4.6.9 IgnoreMember

public WatchVariableDescriptor IgnoreMember (string memberName)

Excludes a member from the generated variable.

4.6.10 RenameMember

public WatchVariableDescriptor RenameMember (string memberNameReal, string memberNameShown)

Changes a member's displayed name in the variable.

4.6.11 IgnoreMember

public WatchVariableDescriptor IgnoreMember (string memberName)

Excludes a member from the generated variable.

4.6.12 IgnoreMembers

public WatchVariableDescriptor IgnoreMembers (params string[] memberNames)

Excludes multiple members.

4.6.13 AllowMember

public WatchVariableDescriptor AllowMember (string memberName)

Re-includes a member that was ignored in a lower priority descriptor.

4.6.14 AllowMembers

public WatchVariableDescriptor Allow

mbers (params string[] memberNames)

Re-includes multiple members.

4.6.15 ShowOnlyMember

public WatchVariableDescriptor S yMember (ing memberName)

Excludes all other members except the specified one.

7OnlyMember (string childNameReal, string childNameShown)

public WatchVariableDescriptor Sh

Combines ShowOnlyMember and RenameMember .

4.6.16 ShowOnlyMembers

public WatchVariableDescriptor Sh

vOnlyMembers (params string[] memberNames)

Same as ShowOnlyMember , but for multiple members.

4.6.17 IgnoreAllMembersDeclaredInClass

public WatchVariableDescriptor Ig: AllMembersDeclaredInClass ()

Ignores all members from the target class, useful for base class definitions.

-33/35- by Justingvar

4.6.18 AllowAllIMembersDeclaredInClass

public WatchVariableDescriptor IgnoreAllMembersDeclaredInClass (Type hierarchyClass)

Same as IgnorerllMembersDeclaredInClass , but for a specified class in the hierarchy.

4.6.18 AllowAllIMembersDeclaredInClass

public WatchVariableDescriptor AllowAllMembe

eclaredInClass ()
Restores all previously ignored members from the target class.
public WatchVariableDescriptor AllowAllMembersDeclaredInClass (Type hierarchyClass)

Same as AllowAllMembersDeclaredInClass , but for a specified class in the hierarchy.

4.6.19 SetObjectReferenceTrackable @

public WatchVariableDescriptor SetObjectReferenceTrackable (bool trackForThisType)

Enables or disables tracking of Unity types (e.g., MonoBehaviour, ScriptableObject), allowing them to appear in the variable's info area for easy reference in the

scene or project.

4.6.20 SetObjectReferenceTrackable @

public WatchVariableDescriptor SetObjectReferenceTrackable (string memberNameReal)

Enables the member memberNameReal of any Unity type (like MonoBehaviour or ScriptableObiject)to appear in the variable's info area, making it easy to

locate the related object in the scene or project.

4.6.21 SetObjectReferenceNonTrackable @

public WatchVariableDescriptor SetObjectReferenceNonTrackable (string memberNameReal)

Disables tracking for the specified member memberNameReal , preventing it from appearing in the variable's info area.

4.6.22 SetTraceable @

public WatchVariableDescriptor SetTraceable (string memberNameReal)

Sets a variable's member memberNameReal values as traceable.

4.6.23 SetMinMaxModeAsGlobal @

public WatchVariableDescriptor SetMinMaxModeAsGlobal (string memberNameReal)

Sets a variable's member memberNameReal min/max mode as global.

4.6.24 SetMinMaxModeAsCustom @

public WatchVariableDescriptor SetMinMaxModeAsCustom(string memberNameReal, double minValue, double maxValue)

Sets a variable's member memberNameReal min/max mode as custom.

4.6.25 SetCollectionModeAsKey @

public WatchVariableDescriptor SetCollectionModeAsKey (string keyMemberRealName)

Enables collection types (4rray, List, etc.) to be displayed as key-value pairs in editor, similar to dictionary types. The keyMemberRealName parameter defines which

member of the element will be used as the display key.

-34/35- by Justingvar

5. Support

5. Support

For any inquiries, please reach out to us.

justingvar.dev@gmail.com

-35/35- by Justingvar

mailto:justingvar.dev@gmail.com

	LiveWatch
	1. Home
	1.1 What is LiveWatch?
	1.2 With LiveWatch, you can:
	1.3 What is LiveWatch Lite?

	2. Getting started
	2.1 Installation
	2.1.1 Check for dependencies
	2.1.2 Download and Import the Package
	2.1.3 Initial Setup

	2.2 Quick Start
	2.2.1 Step 1: Set up Generator
	2.2.2 Step 2: Define the variables in Schema
	2.2.3 Step 3: Create WatchManager Script
	2.2.4 Step 4: Attach WatchManager and Watch the magic

	2.3 Learning Basics
	2.3.1 Watch Window
	2.3.2 Watch
	Basic and custom variable types
	Manual and auto tracking mode

	2.3.3 WatchReference
	2.3.4 WatchSchema
	2.3.5 WatchGenerator

	3. Manual
	3.1 Window Overview
	3.1.1 Watch Window
	1. Search
	2. Live
	3. Collapse
	4. Clear
	5. View
	6. Load
	7.Save
	8. Preferences
	9. Variable Name
	10. Variable Values
	11. Child Variables Preview
	12. Info Area
	13. Extra Text

	3.1.2 Search Panel
	1. New Line
	2. Progress Bar
	3. Previous Result
	4. Next Result
	5. Run
	6. AutoRun
	7. Query Connective Operator
	8. Inverse
	9. Target
	10. Target Type
	11. Query Line Operator
	12. Query
	13. Case
	14. Delete

	3.1.3 Cell View Submenu
	1. Width
	2. Height
	3. Selection
	4. Restore Defaults

	3.1.4 Preferences Submenu
	1. Preferences
	2. Collapse all rows
	3. Generate empty all
	4. Generate all

	3.2 Window Shortcuts
	1. Ctrl+Mouse Scroll
	2. Shift+Mouse Scroll
	3. Alt+Mouse Scroll
	4. Mouse Scroll
	5. F
	6. Space
	7. Down
	8. Up
	9. Left
	10. Right

	3.3 Generator Overview
	1. Auto Regen On Change
	2. Output Class Name
	3. Output Namespace Name
	4. Schema Class File
	5. Output Class File
	6. IsStatic
	7. IsPartial
	8. Class Modifier
	9. Generate Collections Count
	10. Generate Extensions
	11. Max Generation Depth
	12. Max Push Depth
	13. Max Collection Size
	14. Max Dictionary Size
	15. Generate
	16. Generate Empty

	3.4 Usage on Device
	3.4.1 1. Add the WatchSaveCanvas Prefab
	3.4.2 2. Add the LIVE_WATCH_BUILD Define
	3.4.3 3. Make a Build
	3.4.4 4. Launch and Save
	3.4.5 5. Transfer and Load in Unity

	4. Reference API
	4.1 Watch
	4.1.1 Global Management Methods
	UpdateAll
	ClearAll
	DestroyAll

	4.1.2 Type-Indifferent Methods
	GetOrAdd
	PushEmpty
	PushFormat
	PushExtraText
	PushStackTrace

	4.1.3 Per Type Methods
	GetOrAdd
	Setup
	Push
	PushValue
	GetOrAddChild
	SetupWatch

	4.2 WatchReference
	4.2.1 ChildCount
	4.2.2 GetChildNames
	4.2.3 GetOrAdd
	4.2.4 SetAlwaysCollapsable
	4.2.5 SetSortOrder
	4.2.6 SetDecimalPlaces
	4.2.7 UpdateOnce
	4.2.8 PushEmptyValue
	4.2.9 SetTitleFormat
	4.2.10 SetDefaultValueFormat
	4.2.11 AddConditionalValueFormat
	4.2.12 PushValueFormat
	4.2.13 PushExtraText
	4.2.14 SetTraceable
	4.2.15 PushStackTrace
	4.2.16 SetMinMaxModeAsGlobal
	4.2.17 SetMinMaxModeAsCustom
	4.2.18 SetCustomAction
	4.2.19 TrackObjectReference
	4.2.20 PushObjectReference

	4.3 WatchTitleFormat
	4.3.1 Constructor

	4.4 WatchValueFormat
	4.4.1 Constructor

	4.5 WatchSchema
	4.5.1 Generate
	4.5.2 Define
	4.5.3 OnDefine
	4.5.4 OnGenerate

	4.6 WatchVariableDescriptor
	4.6.1 Reset
	4.6.2 SetSelfRecursion
	4.6.3 SetTypeMask
	4.6.4 SetSortOrder
	4.6.5 SetDecimalPlaces
	4.6.6 SetAlwaysCollapsable
	4.6.7 UpdateOnceMember
	4.6.8 RevertUpdateOnceMember
	4.6.9 IgnoreMember
	4.6.10 RenameMember
	4.6.11 IgnoreMember
	4.6.12 IgnoreMembers
	4.6.13 AllowMember
	4.6.14 AllowMembers
	4.6.15 ShowOnlyMember
	4.6.16 ShowOnlyMembers
	4.6.17 IgnoreAllMembersDeclaredInClass
	4.6.18 AllowAllMembersDeclaredInClass
	4.6.19 SetObjectReferenceTrackable
	4.6.20 SetObjectReferenceTrackable
	4.6.21 SetObjectReferenceNonTrackable
	4.6.22 SetTraceable
	4.6.23 SetMinMaxModeAsGlobal
	4.6.24 SetMinMaxModeAsCustom
	4.6.25 SetCollectionModeAsKey

	5. Support

