
Get	Started	With	ALINE
This	is	an	excerpt	from	the	full	documentation.	You	can	view	the	full	documentation	here
(http://arongranberg.com/aline/documentation/stable).	Most	links	on	this	page	will	just	take	you	to	the	full	documentation.

In	this	tutorial	we	will	cover	how	to	create	a	simple	script	and	draw	some	things	from	the	Update	loop	as	well	as	in	a	gizmo
callback.

Contents
Downloading	(http://arongranberg.com/aline/documentation/stable/getstarted.html#downloading)
Drawing	from	the	Update	loop	(http://arongranberg.com/aline/documentation/stable/getstarted.html#drawing-update-
loop)
Scopes	(http://arongranberg.com/aline/documentation/stable/getstarted.html#getstarted-scopes)
Drawing	object	gizmos	(http://arongranberg.com/aline/documentation/stable/getstarted.html#gizmo-callbacks)
Selection	based	drawing	(http://arongranberg.com/aline/documentation/stable/getstarted.html#gizmos-selection)
Project	Settings	(http://arongranberg.com/aline/documentation/stable/getstarted.html#getstarted-settings)

Downloading
The	first	thing	you	need	to	do,	if	you	haven't	done	so	already,	is	to	download	the	package.
You	can	download	the	package	in	the	Asset	Store	or	from	the	package	website	(http://arongranberg.com/aline/download).

Drawing	from	the	Update	loop
If	you	want	to	debug	what	a	script	does,	then	drawing	things	from	the	code	is	a	great	way	to	do	it.
Create	a	new	C#	script	in	Unity	and	name	it	GetStartedExample.cs,	then	open	that	up	in	a	text	editor	and	write	the	following
code.

using	UnityEngine;

//	Important	for	the	script	to	be	able	to	find	the	Draw	class

using	Drawing;

public	class	GetStartedExample	:	MonoBehaviour	{

				void	Update	()	{

								//	Draw	a	cylinder	at	the	object's	position	with	a	height	of	2	and	a	radius	of	0.5

								Draw.WireCylinder(transform.position,	Vector3.up,	2f,	0.5f);

				}

}

In	your	Unity	scene	you	can	then	create	a	new	GameObject	and	attach	the	GetStartedExample
(http://arongranberg.com/aline/documentation/stable/getstartedexample.html)	script	to	it.	If	you	press	play	you	should	see	a
cylinder	rendered	at	the	object's	position.

You	can	draw	other	things	than	cylinders,	of	course.	Take	a	look	at	the	Drawing	Commands
(http://arongranberg.com/aline/documentation/stable/drawingcommands.html)	page	for	a	list	of	them.

http://arongranberg.com/aline/documentation/stable
http://arongranberg.com/aline/documentation/stable/getstarted.html#downloading
http://arongranberg.com/aline/documentation/stable/getstarted.html#drawing-update-loop
http://arongranberg.com/aline/documentation/stable/getstarted.html#getstarted-scopes
http://arongranberg.com/aline/documentation/stable/getstarted.html#gizmo-callbacks
http://arongranberg.com/aline/documentation/stable/getstarted.html#gizmos-selection
http://arongranberg.com/aline/documentation/stable/getstarted.html#getstarted-settings
http://arongranberg.com/aline/download
http://arongranberg.com/aline/documentation/stable/getstartedexample.html
http://arongranberg.com/aline/documentation/stable/drawingcommands.html


If	you	want	to	render	the	cylinder	in	a	different	color,	you	can	simply	add	a	color	parameter	at	the	end.	All	drawing	commands
have	an	optional	color	parameter	at	the	end.

Draw.WireCylinder(transform.position,	Vector3.up,	2f,	0.5f,	Color.red);

Scopes
A	powerful	abstraction	used	in	this	package	is	the	notion	of	scopes.	Scopes	can	be	used	to	set	the	color,	matrix,	line	width	or
duration	of	multiple	drawing	commands	at	once	without	having	to	individually	specify	them	or	having	to	do	matrix
multiplications	manually.	This	is	both	faster	and	leads	to	more	readable	code.

//	Draw	three	red	cubes

using	(Draw.WithColor(Color.red))	{

				Draw.WireBox(transform.position,	Vector3.one);

				Draw.WireBox(transform.position	+	Vector3.right,	Vector3.one);

				Draw.WireBox(transform.position	-	Vector3.right,	Vector3.one);

}

Using	matrix	scopes	is	very	useful	if	you	want	to,	for	example,	draw	in	local	space	relative	to	some	object.	In	the	example
below,	a	cylinder	is	drawn	in	an	object's	local	space.	This	means	it	is	moved,	rotated	and	scaled	with	the	object	automatically.

using	(Draw.InLocalSpace(transform))	{

				//	Draw	a	box	at	(0,0,0)	relative	to	the	current	object

				//	This	means	it	will	show	up	at	the	object's	position

				Draw.WireBox(Vector3.zero,	Vector3.one);

}

//	Equivalent	code	using	the	lower	level	WithMatrix	scope

using	(Draw.WithMatrix(transform.localToWorldMatrix))	{

				Draw.WireBox(Vector3.zero,	Vector3.one);

}

Videos	cannot	be	played	in	pdfs.	Take	a	look	at	the	online	documentation	for	the	video	which	normally	goes	here.
In	the	example	below	the	color	and	duration	scopes	are	shown.

//	This	box	will	be	drawn	for	2	seconds

using	(Draw.WithDuration(2))	{

				Draw.WireBox(Vector3.zero,	Vector3.one);

}

//	Scopes	can	be	nested

using	(Draw.WithColor(Color.red))	{

				using	(Draw.WithDuration(2))	{

								Draw.WireBox(Vector3.zero,	Vector3.one);

				}

}

See
Draw.WithColor	(http://arongranberg.com/aline/documentation/stable/draw/withcolor.html#WithColor)
Draw.WithMatrix	(http://arongranberg.com/aline/documentation/stable/draw/withmatrix.html#WithMatrix)
Draw.WithLineWidth	(http://arongranberg.com/aline/documentation/stable/draw/withlinewidth.html#WithLineWidth)
Draw.WithDuration	(http://arongranberg.com/aline/documentation/stable/draw/withduration.html#WithDuration)
Draw.InLocalSpace	(http://arongranberg.com/aline/documentation/stable/draw/inlocalspace.html#InLocalSpace)
Draw.InScreenSpace	(http://arongranberg.com/aline/documentation/stable/draw/inscreenspace.html#InScreenSpace)

Drawing	object	gizmos
Drawing	helper	visualizations	for	objects	in	the	scene	view	is	often	helpful	when	developing	a	game.	With	Unity's	built-in	gizmo
system	you	draw	everything	in	the	OnDrawGizmos	method	and	you	need	to	use	the	Gizmos	class	instead	of	the	Debug	class.	In
this	package,	you	do	everything	with	the	Draw	(http://arongranberg.com/aline/documentation/stable/draw.html)	class.
To	receive	gizmo	callbacks,	you	need	to	make	your	script	inherit	from	MonoBehaviourGizmos
(http://arongranberg.com/aline/documentation/stable/monobehaviourgizmos.html)	instead	of	from	MonoBehaviour.	You	can
then	override	the	DrawGizmos	method	and	draw	your	gizmos	there	exactly	as	you	would	in	other	parts	of	the	code.

http://arongranberg.com/aline/documentation/stable/draw/withcolor.html#WithColor
http://arongranberg.com/aline/documentation/stable/draw/withmatrix.html#WithMatrix
http://arongranberg.com/aline/documentation/stable/draw/withlinewidth.html#WithLineWidth
http://arongranberg.com/aline/documentation/stable/draw/withduration.html#WithDuration
http://arongranberg.com/aline/documentation/stable/draw/inlocalspace.html#InLocalSpace
http://arongranberg.com/aline/documentation/stable/draw/inscreenspace.html#InScreenSpace
http://arongranberg.com/aline/documentation/stable/draw.html
http://arongranberg.com/aline/documentation/stable/monobehaviourgizmos.html


using	UnityEngine;

using	Drawing;

public	class	GetStartedGizmos	:	MonoBehaviourGizmos	{

				public	override	void	DrawGizmos	()	{

								using	(Draw.InLocalSpace(transform))	{

												//	Draw	a	cylinder	at	the	object's	position	with	a	height	of	2	and	a	radius	of	0.5

												Draw.WireCylinder(Vector3.zero,	Vector3.up,	2f,	0.5f);

								}

				}

}

Gizmos	will	be	drawn	all	the	time,	even	when	the	game	is	not	playing	or	if	it	is	paused.	You	can	toggle	gizmo	drawing	for
individual	components	in	the	gizmos	menu	in	the	top	right	corner	of	the	scene	view	and	game	view.

Selection	based	drawing
If	you	have	a	lot	of	gizmos	in	a	scene,	it	can	sometimes	cause	quite	a	bit	of	clutter.	One	solution	to	this	is	to	draw	simple
gizmos	most	of	the	time	and	only	draw	more	elaborate	or	detailed	gizmos	when	the	object	is	selected.
This	can	easily	be	accomplished	using	the	GizmoContext
(http://arongranberg.com/aline/documentation/stable/gizmocontext.html)	class.

public	override	void	DrawGizmos	()	{

				using	(Draw.InLocalSpace(transform))	{

								if	(GizmoContext.InSelection(this))	{

												//	Draw	a	yellow	cylinder

												Draw.WireCylinder(Vector3.zero,	Vector3.up,	2f,	0.5f,	Color.yellow);

								}	else	{

												//	Draw	a	yellow	circle	with	some	transparency

												Draw.xz.Circle(Vector3.zero,	0.5f,	Color.yellow	*	new	Color(1,	1,	1,	0.5f));

								}

				}

}

Videos	cannot	be	played	in	pdfs.	Take	a	look	at	the	online	documentation	for	the	video	which	normally	goes	here.

See
GizmoContext	(http://arongranberg.com/aline/documentation/stable/gizmocontext.html)

http://arongranberg.com/aline/documentation/stable/gizmocontext.html
http://arongranberg.com/aline/documentation/stable/gizmocontext.html


Project	Settings
Sometimes	it	can	be	convenient	to	adjust	the	opacity	of	gizmos	globally.	This	can	be	done	in	the	project	settings.	Solid	objects
(e.g.	Draw.SolidBox	(http://arongranberg.com/aline/documentation/stable/draw/solidbox.html#SolidBox3))	are	by	default	drawn
slightly	transparent.	You	can	adjust	this	in	the	project	settings	if	you	wish.

http://arongranberg.com/aline/documentation/stable/draw/solidbox.html#SolidBox3

